A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.

نویسندگان

  • Natalia N Singh
  • Maria Shishimorova
  • Lu Cheng Cao
  • Laxman Gangwani
  • Ravindra N Singh
چکیده

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. Most SMA cases are associated with the low levels of SMN owing to deletion of Survival Motor Neuron 1 (SMN1). SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to predominant skipping of exon 7. Hence, correction of aberrant splicing of SMN2 exon 7 holds the potential for cure of SMA. Here we report an 8-mer antisense oligonucleotide (ASO) to have a profound stimulatory response on correction of aberrant splicing of SMN2 exon 7 by binding to a unique GC-rich sequence located within intron 7 of SMN2. We confirm that the splicing-switching ability of this short ASO comes with a high degree of specificity and reduced off-target effect compared to larger ASOs targeting the same sequence. We further demonstrate that a single low nanomolar dose of this 8-mer ASO substantially increases the levels of SMN and a host of factors including Gemin 2, Gemin 8, ZPR1, hnRNP Q and Tra2-beta1 known to be down-regulated in SMA. Our findings underscore the advantages and unmatched potential of very short ASOs in splicing modulation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy

Here, we report a long-distance interaction (LDI) as a critical regulator of alternative splicing of Survival Motor Neuron 2 (SMN2) exon 7, skipping of which is linked to spinal muscular atrophy (SMA), a leading genetic disease of children and infants. We show that this LDI is linked to a unique intra-intronic structure that we term internal stem through LDI-1 (ISTL1). We used site-specific mut...

متن کامل

Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.

Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5' splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-...

متن کامل

Antisense oligonucleotide mediated therapy of spinal muscular atrophy.

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA results from deletions or mutations of survival motor neuron 1 (SMN1), an essential gene. SMN2, a nearly identical copy, can compensate for SMN1 loss if SMN2 exon 7 skipping is prevented. Among the many cis-elements involved in the splicing regulation of SMN exon 7, intronic splicing silencer N1 (ISS-N1) has eme...

متن کامل

ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing...

متن کامل

A Multi-Exon-Skipping Detection Assay Reveals Surprising Diversity of Splice Isoforms of Spinal Muscular Atrophy Genes

Humans have two near identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with the predominant skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a neurodegenerative disease. SMA patient cells devoid of SMN1 provide a powerful system to examine splicing pattern of various SMN2 exons. Until now, similar system to examine splicing of SMN1 exons was unavai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA biology

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2009